Bi-clustering of metabolic data using matrix factorization tools.
نویسندگان
چکیده
Metabolic phenotyping technologies based on Nuclear Magnetic Spectroscopy (NMR) and Mass Spectrometry (MS) generate vast amounts of unrefined data from biological samples. Clustering strategies are frequently employed to provide insight into patterns of relationships between samples and metabolites. Here, we propose the use of a non-negative matrix factorization driven bi-clustering strategy for metabolic phenotyping data in order to discover subsets of interrelated metabolites that exhibit similar behaviour across subsets of samples. The proposed strategy incorporates bi-cross validation and statistical segmentation techniques to automatically determine the number and structure of bi-clusters. This alternative approach is in contrast to the widely used conventional clustering approaches that incorporate all molecular peaks for clustering in metabolic studies and require a priori specification of the number of clusters. We perform the comparative analysis of the proposed strategy with other bi-clustering approaches, which were developed in the context of genomics and transcriptomics research. We demonstrate the superior performance of the proposed bi-clustering strategy on both simulated (NMR) and real (MS) bacterial metabolic data.
منابع مشابه
A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem. At each step of ALS algorithms two convex least square problems should be solved, which causes high com...
متن کاملHeterogeneous Information Networks Bi-clustering with Similarity Regularization
Clustering analysis of multi-typed objects in heterogeneous information network (HINs) is an important and challenging problem. Nonnegative Matrix Tri-Factorization (NMTF) is a popular bi-clustering algorithm on document data and relational data. However, few algorithms utilize this method for clustering in HINs. In this paper, we propose a novel bi-clustering algorithm, BMFClus, for HIN based ...
متن کاملA new approach for building recommender system using non negative matrix factorization method
Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...
متن کاملEnhancing Clustering by Exploiting Complementary Data Modalities in the Medical Domain
Data Clustering has been an active area of research in many different application areas, with existing clustering algorithms mostly focusing on partitioning one modality or representation of the data. In this study, we delineate and demonstrate a new, enhanced data clustering approach whose innovation is its exploitation of multiple data modalities. We propose BI-NMF, a bi-modal clustering appr...
متن کاملAn Efficient Nonnegative Matrix Factorization & Game Theoretic Framework Based Data Clustering
This Mostly, factorization of matrices is not unique, Non-negative Matrix Factorization (NMF) changes from the Principal Component Analysis, Singular Value Decomposition, Nystrom Method, and it imposes the controls that the factors must be non-negative. The proposed method utilizes a most powerful tool derivative from evolutionary game theory, which permits re-organizing the clustering attained...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Methods
دوره شماره
صفحات -
تاریخ انتشار 2018